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Abstract

We present methods to estimate marginal utility and marginal product functions
that are nonadditive in the unobservable random terms, using observations from a single
hedonic equilibrium market. We show that nonadditive marginal utility and nonadditive
marginal product functions are capable of generating equilibria that exhibit bunching,
as well as other types of equilibria. We provide conditions under which these types
of utility and production functions are nonparametrically identi…ed, and we propose
nonparametric estimators for them. The estimators are shown to be consistent and
asymptotically normal.



1. INTRODUCTION

In hedonic models, the price of a product is a function of the vector of attributes
characterizing the product. These models are used to study the price of a large variety
of attributes, such as job safety, size of a house, school quality, distance of a house from
an environmental hazard, and others.

In a seminal paper, Sherwin Rosen (1974) pioneered the study of hedonic models in
perfectly competitive settings. An economy in these models is speci…ed by a distribution
of consumers and a distribution of …rms. In equilibrium, consumers are matched with
…rms. In these models, each consumer is characterized by a utility function that depends
on the attributes characterizing the product, as well as on some individual characteris-
tics. Each …rm is characterized by a production function that depends on the attributes
characterizing the product, as well as on some characteristics of the …rm. Given a price
function for the attributes, each consumer demands the vector of attributes that max-
imizes his utility, and each …rm supplies the vector of attributes that maximizes its
pro…t. The equilibrium price function is such that the distribution of demand equals
the distribution of supply, for all values of the attributes.

Rosen (1974) suggested a method to estimate hedonic models. First, estimate the
price function. Second, use the equations for the …rst order conditions of the optimiza-
tion of the consumers and …rms to estimate the utility and production functions. When
the utility and production functions are quadratic and the unobservable heterogene-
ity variables are normal, the model has a closed form solution, where the equilibrium
marginal price function is linear in the attributes. (This particular speci…cation was
…rst studied by Tinbergen (1956).)

The in‡uential papers by James Brown and Harvey Rosen (1982) and Brown (1983)
strongly criticized the method of identi…cation proposed by Rosen. (See also Epple
(1987) and Kahn and Lang (1988).) Using the linear-quadratic model as an approxima-
tion, Brown and Rosen argued that hedonic models are not identi…ed. They claimed that
sorting implies that within a single market, there are no natural exclusion restrictions.

Recently, Ekeland, Heckman, and Nesheim (2001), building on previous work by
Heckman (1991,1995,1999), analyzed Brown and Rosen’s claim, and concluded that
the nonidenti…cation is speci…c to the linear case. Moreover, they showed that the
linear case is nongeneric. Ekeland, Heckman, and Nesheim (2001) considered a model
with additive marginal utility and additive marginal product function and showed that
is identi…ed from single market data. In the speci…cation, the marginal utility was
the sum of an unobservable random term, a nonparametric function of the attribute,
and a nonparametric function of an observable individual characteristic. The marginal
product function was speci…ed in a similar way. The equilibrium price function as well
as the conditional distributions of the attribute given the observable characteristics
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were assumed to be given. They presented two methods for recovering the functions.
One was based on extensions of average derivative models (Powell, Stock, and Stoker
(1989)) and transformation models (Horowitz (1996, 1998)). The other was based on
nonparametric instrumental variables (Darolles, Florens, and Renault (2001), Blundell
and Powell (2000), Newey and Powell (2000). The performance of those estimators and
the ones presented in this paper are studied in Heckman, Matzkin, and Nesheim (2002).

Inspired by the positive identi…cation result in Ekeland, Heckman, and Nesheim
(2001), we investigate in this paper the possibility of relaxing the additive structure,
which was used in that paper, for the marginal utility and the marginal product func-
tions. The importance of such a study is not only to allow more ‡exibility in the
speci…cation of the utility and marginal product functions in the model, but, more im-
portantly, to specify economies that can generate a wider variety of equilibrium price
function.

In this paper, we consider hedonic equilibrium models where the marginal utility and
marginal product functions are nonadditive in the unobserved heterogeneity variables.
We show that these more general economies are capable of generating equilibria with
bunching, in the sense that a positive mass of consumers and …rms locate at a common
location. (See Nesheim (2001) for analyses of various types of equilibrium price functions;
also Wilson (1991).)

We provide conditions under which the nonadditive marginal utility and nonaddi-
tive marginal production function are identi…ed from the equilibrium price function,
the distribution of demanded attributes conditional on the observable characteristics of
the consumers, and the distribution of supplied attributes conditional on the observ-
able characteristics of the …rms. The identi…cation proceeds as follows. First, using
the methods in Matzkin (2002), we show that from the conditional distributions we
can identify the demand and supply functions, which are nonparametric, nonadditive
functions of the observable and unobservable characteristics of, respectively, the con-
sumers and …rms. Second, we use the demand and supply functions, together with the
equilibrium price function, and the restrictions imposed by the …rst order conditions
to recover the marginal utility and marginal product functions. This last step requires
making an assumption on the marginal utility and marginal product functions, which
reduces by one the dimension of the domain of these functions.

We propose nonparametric estimators for the marginal utility and marginal product
functions, and show that they are consistent and asymptotically normal.

Estimation of demand models generated by random utility functions have been
studied in the past using parametric assumptions (Heckman (1974), McFadden (1974),
Heckman andWillis (1977)), semiparametric assumptions (Manski (1975,1985), Cosslett
(1983), Matzkin (1991), Horowitz (1992), Klein and Spady (1993), Ichimura and Thomp-
son (1994), among others), and more recently, using nonparametric assumptions (Matzkin
(1992,1993), Briesch, Chintagunta and Matzkin (1997), Brown and Matzkin (1998),
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Horowitz (2001), McFadden and Train (2000), among others). McElroy (1981,1987),
Brown and Walker (1985,1995) and Lewbel (1996) considered inference of random util-
ity and random production functions in perfectly competitive, non-hedonic situations.

Estimation of nonparametric models with nonadditive random terms has been pre-
viously studied in Olley and Pakes (1996), Altonji and Ichimura (1997), Altonji and
Matzkin (1997, 2001), Briesch, Chintagunta and Matzkin (1997), Brown and Matzkin
(1998), Heckman and Vytlacil (1999, 2001), Matzkin (1999, 2002), Vytlacil (2000),
Blundell and Powell (2000), and, more recently, by Bajari and Benkard (2001), Chesher
(2001), Hong and Shum (2001), and Imbens and Newey (2001). Bajari and Benkard
(2001) consider hedonic price functions where some of the attributes are unobservable.

The outline of the paper is as follows. In the next section, we describe the hedonic
model, for a univariate attribute. We provide two simple analytic examples of hedonic
equilibria generated by nonadditive functions, one without bunching and the other with
bunching. In Section 3, we study the identi…cation of nonadditive marginal utility
and nonadditive marginal product function. In Section 4, we present nonparametric
estimators and their asymptotic properties.

2. THE HEDONIC EQUILIBRIUM MODEL

To describe the hedonic model, we will consider, for simplicity a labor market setting.
Consumers (workers) match to single worker …rms. Let ! denote an attribute vector,
characterizing jobs, assumed to be a disamenity for the consumers and an input for the
…rms. We will assume that ! is unidimensional. Each consumer has a utility function
"¤(#$ !$ %$ &) where # is consumption, % is a vector of observable characteristics of the
consumer and & is an unobservable heterogeneity term. Each …rm has a production
function ¡(!$ '$ () where ' is a vector of observable characteristics of the …rm and (
is an unobservable heterogeneity term. The function "¤ will be assumed to be twice
di¤erentiable with respect to its …rst two arguments. The function ¡ will be assumed to
be twice di¤erentiable with respect to !) The unobservable random terms, & and ($ will
be assumed to be statistically independent of the vectors of observable characteristics,
% and ')

Each consumer chooses (#$ !) to maximize the utility function "¤(#$ !$ %$ &) subject
to the constraint

# = * (!) ++

where + denotes unearned income. Substituting the constraint into the utility function,
we can describe the consumer’s problem as the choice of ! that maximizes the value of
the function
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"¤(* (!) ++$ !$ %$ &)

The …rst order condition for this maximization is

"¤! (* (!) ++$%$ !$ &)*" (!) + "
¤
" (* (!) ++$ !$ %$ &) = 0

where "¤! and "¤" denote the partial derivatives of "¤ with respect to, respectively, its
…rst and second arguments. This can be expressed as

*" (!) = , (* (!) ++$ !$ %$ &)

where

, (* (!) ++$ !$ %$ &)) ´ ¡"¤" (* (!) ++$ !$ %$ &)
"¤! (* (!) ++$%$ !$ &)

For simplicity, we will restrict our analysis to the case where

"¤! ´ 1
so that

, (* (!) ++$ !$ %$ &) = ¡"¤" (* (!) ++$ !$ %$ &)
We will further assume, also for simplicity, that + = 0) De…ne

""(!$ %$ &) ´ ¡"¤" (!$ %$ &)
Then, the …rst and second order conditions for maximization of "¤ over ! become

FOC: *"(!)¡ ""(!$ %$ &) = 0

SOC: *""(!)¡ """(!$ %$ &) - 0

By the Implicit Function Theorem and the SOC, there exists a function ! = .(%$ &) such
that

*"(.(%$ &))¡ ""(.(%$ &)$ %$ &) = 0
Moreover

/.(%$ &)

/&
=

""#(.(%$ &)$ %$ &)

*""(.(%$ &))¡ """(.(%$ &)$ %$ &)
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Hence,
/.(%$ &)

/&
0 0 if ""# - 0

Let e.(!$ %) denote the inverse of . with respect to &) Then,
*"(!)¡ ""(!$ %$ e.(!$ %)) = 0

/e.(!$ %)
/!

=
*""(!)¡ """(!$ %$ e.(!$ %))

""#(!$ %$ e.(!$ %))
and

/e.(!$ %)
/!

0 0 if ""# - 0

From the other side of the market, each …rm chooses ! to maximize the pro…t function

¡(!$ '$ ()¡ * (!)

The …rst and second order conditions of this optimization problem are

FOC: ¡"(!$ '$ ()¡ *"(!) = 0

SOC: ¡""(!$ '$ ()¡ *""(!) - 0

By the Implicit Function Theorem and SOC there exists a function ! = 1('$ () such
that

¡"(1('$ ()$ '$ ()¡ *"(1('$ ()) = 0
Moreover

/1('$ ()

/(
=

¡"$(1('$ ()$ '$ ()

*""(1('$ ())¡ ¡""(1('$ ()$ '$ ()
Hence,

/1('$ ()

/(
0 0 if ¡"$ 0 0

Let e1(!$ ') denote the inverse of 1 with respect to () Then,
¡"(!$ '$ e1(!$ '))¡ *"(!) = 0
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/ e1(!$ ')
/!

=
*""(!)¡ ¡""(!$ '$ e1(!$ '))

¡"$(!$ '$ e1(!$ '))
and

/ e1(!$ ')
/!

0 0 if ¡"$ 0 0

We will assume that ""# - 0 and ¡"$ 0 0) In equilibrium, the density of the
demanded ! must equal the density of the supplied ! for all values of !) To express this
condition in terms of the primitive functions, consider the transformation

! = .(%$ &) & % = %

The inverse of this transformation is

& = e. (!$ %) & % = %

and the Jacobian determinant is¯̄̄̄
%e&("'()
%"

%e&("'()
%(

0 1

¯̄̄̄
=

¯̄̄̄
/e. (!$ %)
/!

¯̄̄̄
=
/e. (!$ %)
/!

Let 2( and 2# denote the densities of the vector of observable and unobservable char-
acteristics of the consumers. Let e3 denote the support of %) Then, the density of the
supplied ! is Z

e) 2# (e. (!$ %)) 2((%) /e. (!$ %)
/!

1%

To obtain the density of the demanded !$ consider the transformation

! = 1('$ () & ' = '

The inverse of this transformation is

( = e1 (!$ ') & ' = '

and the Jacobian determinant is¯̄̄̄
¯ % e*("'+)

%"
% e*("'+)
%+

0 1

¯̄̄̄
¯ =

¯̄̄̄
¯/ e1 (!$ ')/!

¯̄̄̄
¯ = / e1 (!$ ')

/!
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Let 2+ and 2$ denote the densities of the vector of observable and unobservable charac-
teristics of the …rms. Let e4 denote the support of ') Then, the density of the demanded
! is Z

e, 2$

³e1 (!$ ')´ 2+(') / e1 (!$ ')
/!

1'

The equilibrium condition is that the density of the demand equals the density of
the supply, for all values of ! ::

Z
e) 2# (e. (!$ %)) 2((%) /e. (!$ %)

/!
1% =

Z
e, 2$

³e1 (!$ ')´ 2+(') / e1 (!$ ')
/!

1'

From the FOC of the consumer and …rm, the functions e. and e1 depend on the function
*") Their derivatives depend then on *" and *"") The equilibrium condition determines
then a function *" as a solution to a …rst order di¤erential equation. This function
will be the derivative of an equilibrium price function if the SOC of the consumer and
…rm are satis…ed. To determine the conditions under which the SOC are satis…ed, we
substitute in the equilibrium equation the expression for the derivatives of the functionse. and e1$ to get

Z
e) 2# (e. (!$ %)) 2((%)

·
*""(!)¡ """(!$ %$ e.(!$ %))

""#(!$ %$ e.(!$ %))
¸
1%

=

Z
e, 2$

³e1 (!$ ')´ 2+(')"*""(!)¡ ¡""(!$ '$ e1(!$ '))
¡"$(!$ '$ e1(!$ '))

#
1'

or

Z
e)
Z
e,
·
2#*""¡"$ ¡ 2#"""¡"$ ¡ 2$""#*"" + 2$""#¡""

""# ¡"$

¸
2((%) 2+(') 1% 1' = 0

or

Z
e)
Z
e,
·
*"" (2#¡"$ ¡ 2$""#)¡ 2#"""¡"$ + 2$""#¡""

""# ¡"$

¸
2((%) 2+(') 1% 1' = 0

So that
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*""

Z
e)
Z
e,
·
2#¡"$ ¡ 2$""#
""# ¡"$

¸
2((%) 2+(') 1% 1' =

Z
e)
Z
e,
·
2#"""¡"$ ¡ 2$""#¡""

""# ¡"$

¸
2((%) 2+(') 1% 1'

or

*"" =

R e) Re, h-!.""¡"#¡-#."!¡""."! ¡"#

i
2((%) 2+(') 1% 1'R e) Re, h-!¡"#¡-#."!."! ¡"#

i
2((%) 2+(') 1% 1'

The SOC of the consumer are satis…ed if

*""(!)¡ """(!$ %$ e.(!$ %)) - 0
Substituting *"" we get that the SOC of the consumer are satis…ed whenR e) Re, h-!.""¡"#¡-#."!¡""."! ¡"#

i
2((%) 2+(') 1% 1'R e) Re, h-!¡"#¡-#."!."! ¡"#

i
2((%) 2+(') 1% 1'

¡ """(!$ %$ e.(!$ %)) - 0
Similarly, for the …rm, the SOC are satis…ed when

¡""(!$ '$ e1(!$ '))¡
R e) Re, h-!.""¡"#¡-#."!¡""."! ¡"#

i
2((%) 2+(') 1% 1'R e) Re, h-!¡"#¡-#."!."! ¡"#

i
2((%) 2+(') 1% 1'

- 0

A necessary condition for the SOC of the consumer and …rm to be satis…ed for all ! is
that

¡""(!$ '$ e1(!$ ')) - """(!$ %$ e.(!$ %))
It is easy to verify that when there is only one heterogeneity variable, ($ for the …rm
and only one heterogeneity variable, &$ for the consumer, the condition

¡""(!$ e1(!)) - """(!$ e.(!))
is necessary and su¢cient for the SOC of both the …rm and the consumer to be satis…ed.

Consider, as a special case, the speci…cation studied in Ekeland, Heckman, and
Nesheim (2001) where, for some functions 5/$ 6/$ 5- $ and 6- $

""(!$ %$ &) = 5/(!) + 6/(%)¡ &

¡"(!$ '$ () = 5- (!) + 6- (') + (
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In this case,

¡"$ = 1 ""# = ¡1 """ = 5
0
/(!) 761 ¡"" = 5

0
- (!)

e.(!$ %) = 5/(!)¡ *"(!) + 6/(%) 761 e1(!$ ') = *"(!)¡5- (!)¡ 6- (')
Then,

*"" =

R e) Re, h2# (e. (!$ %))50/(!) + 2$ ³e1 (!$ ')´50- (!)i 2((%) 2+(') 1% 1'R e) Re, h2# (e. (!$ %)) + 2$ ³e1 (!$ ')´i 2((%) 2+(') 1% 1'
or

*"" =
50/(!)

R e) 2# (e. (!$ %)) 2((%)1%+50- (!) Re, 2$ ³e1 (!$ ')´ 2+(')1'R e) 2# (e. (!$ %)) 2((%)1%+ Re, 2$ ³e1 (!$ ')´ 2+(')1'
Hence, the SOC of the consumer is satis…ed when

50/(!)
R e) 2# (e. (!$ %)) 2((%)1%+50- (!) Re, 2$ ³e1 (!$ ')´ 2+(')1'R e) 2# (e. (!$ %)) 2((%)1%+ Re, 2$ ³e1 (!$ ')´ 2+(')1' - 50/(!)

Since the denominator is positive, this is equivalent to

50- (!) - 5
0
/(!)

Similarly, the SOC of the …rm are satis…ed when

50- (!) -
50/(!)

R e) 2# (e. (!$ %)) 2((%)1%+50- (!) Re, 2$ ³e1 (!$ ')´ 2+(')1'R e) 2# (e. (!$ %)) 2((%)1%+ Re, 2$ ³e1 (!$ ')´ 2+(')1'
which is also equivalent to

50- (!) - 5
0
/(!)

Hence, the SOC in the additive model are satis…ed at any ! if and only if
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50- (!) - 5
0
/(!)

Clearly, the nonadditive model can generate a wider class of equilibria, since the
condition for the SOC to be satis…ed depends on the heterogeneity variables. In contrast,
in the additive model, satisfaction of the SOC depends solely on a function of !) In
Section 2.2, we present a nonadditive economy whose equilibrium exhibits bunching.

A di¤erent way of expressing the equilibrium condition is by using distribution func-
tions instead of density functions. Let 8/ denote the supplied ! and 8- denote the
demanded !) The equilibrium condition is that for all values !$

Pr(8/ · !) = Pr(8- · !)
Assume that ""# - 0 and ¡"$ 0 0) Then, for the consumer (worker),

Pr(8/ · !) = Pr (.(3$ &) · !)

=
R e) Pr (.(3$ &) · !j3 = %) 2((%)1%

=
R e) Pr (& · e. (!$ %) j3 = %) 2((%)1%

=
R e) Pr (& · e. (!$ %)) 2((%)1%

=
R e) 9# (e. (!$ %)) 2((%)1%

while for the …rm

Pr(8- · !) = Pr (1(4$ () · !)

=
R e) Pr (1(4$ () · !j4 = ') 2+(')1'

=
R e) Pr³( · e1 (!$ ') j4 = '´ 2+(') 1'

=
R e) Pr³( · e1 (!$ ')´ 2+(')1'

=
R e) 9$ ³e1 (!$ ')´ 2+(') 1'

Hence, the equilibrium condition becomes
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Z
e) 9# (e. (!$ %)) 2((%) 1% =

Z
e) 9$

³e1 (!$ ')´ 2+(') 1'
which is a functional equation in *") If it were the case that ¡"$ - 0$ the equilibrium
condition would beZ

e) 9# (e. (!$ %)) 2((%)1% =
Z
e)
h
1¡ 9$

³e1 (!$ ')´i 2+(')1'
while if it were the case that ""# 0 0$ the equilibrium condition would beZ

e) [1¡ 9# (e. (!$ %)) 2((%)1%] =
Z
e) 9$

³e1(!$ ')´ 2+(') 1'
2.1. AN ANALYTIC EXAMPLE

To provide a very simple analytic example of a nonadditive economy, suppose that
all the heterogeneity across …rms is represented by a scalar variable ( and all the het-
erogeneity across consumers is represented by a scalar variable &) Suppose that the
consumer problem is

Max" * (!)¡ "$

#

and the …rm problem is

Max" !0( ¡ * (!))

Suppose that & is distributed "(&1$ &2)$ ( is distributed "((1$ (2)$ &1 = (1$ and &2 =
(2) Then, the …rst and second order conditions for the consumer’s problem are

FOC: *" ¡ 3 "$¡1
# = 0

SOC: *"" ¡ 3 (3¡1) "$¡2
# - 0

The …rst and second order conditions for the …rm’s problem are

FOC: :!0¡1( ¡ *" = 0

SOC: : (:¡ 1) !0¡2( ¡ *"" - 0)
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The inverse supply and demand functions are

& = e.(!) = ; !3¡1

*"
761 ( = e1(!) = *"

: !0¡1

The equilibrium condition is

9#

µ
; !3¡1

*"(!)

¶
= 9$

µ
*"(!)

: !0¡1

¶
which, using the assumption about the distributions of & and ( becomes

; !3¡1

*"(!)
=
*"(!) !1¡0

:

for all ! such that &1 · 3 "$¡1
4 0(") · &2) Hence, the equilibrium price function is

*"(!) =
³
:; !0+3¡2

´152
for all ! such that &

2
$¡%
1

³
0
3

´ 1
$¡% · ! · &

2
$¡%
2

³
0
3

´ 1
$¡%

) Substituting this equation into
the …rst order conditions of the consumer and …rm, it is easy to verify that the supply
function of the consumer is

! =

µ
:

;

¶ 1
$¡%

&
2

$¡%

2<= &1 · & · &2$ and the demand function of the …rm is

! =

µ
:

;

¶ 1
$¡%

(
2

$¡%

2<= (1 · ( · (2) Hence, in equilibrium, for each > between &1 = (1 and &2 = (2$ each
consumer with & = > gets matched with a …rm with ( = >) Using these equations and *""
into the SOC of the consumer and …rm, it is easy to verify that the SOC’s are satis…ed
if and only if

: - ;
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2.2. AN EXAMPLE OF AN EQUILIBRIUM WITH BUNCHING

Hedonic equilibrium models where the heterogeneity enters into the marginal utility and
marginal product functions in nonadditive ways are capable of generating di¤erent types
of equilibrium. In the simple example presented in the previous section, the heterogeneity
variables of the consumer and the …rm were continuously distributed and the resulting
equilibrium ! was also continuously distributed. We next present an example where the
resulting equilibrium ! is a mixed, continuous-discrete, random variable, even though
the heterogeneity variables of the consumer and the …rm are continuously distributed.

Suppose that each …rm has a production function

¡(!$ () = !0 (

where : = )5 and ( is distributed "(0$ 1). Each …rm’s problem is then

?7%" !
0 ( ¡ * (!)

FOC: :!0¡1( ¡ *"(!) = 0

SOC: :(:¡ 1)!0¡2( ¡ *""(!) - 0

The FOC implies

((!) =
*"(!) !

1¡0

:

Suppose that each consumer has a disutility of ! given by

@ (!$ &) = !#

where & is a random variable distributed "()25$ )75). Each consumer’s problem is then

?7%" * (!)¡ @ (!$ &)

FOC: *"(!)¡ & !#¡1 = 0

SOC: *""(!)¡ & (&¡ 1) !#¡2 - 0)

Applying the results from the previous section, we get that the SOC of the consumer
and …rm are satis…ed if and only if

¡""(!$ ((!)) - @""(!$ &(!))
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or, equivalently, when

¡""(!(()$ () - @""(!(&)$ &) & !(() = !(&) = !

Hence, in the given speci…cation, the SOC are satis…ed if and only if

:(:¡ 1)!0¡2( - & (&¡ 1) !#¡2

Using the FOC of the …rm and the consumer, this last condition becomes

(:¡ 1)!¡1*"(!) - (&¡ 1) !¡1*"(!)
which is satis…ed when

: - &

Since Pr(& 0 :) = )5$ a positive proportion of the market will locate at corner solutions.
More speci…cally, in an equilibrium, a typical consumer with & 2 (:$ 32:] will supply

! =
³
1¡ :

2&

´ 1
!¡%

and will get matched with a …rm ( such that

( =
&

:

³
1¡ :

2&

´
Firms with ( - )5 and & - )5 will locate at ! = 0)

3. IDENTIFICATION

In this section, we analyze the identi…cation of the random marginal utility and marginal
production functions in hedonic equilibrium models. We assume that the equilibrium
price function and the distributions of (!$ %) and (!$ ') are given, where ! denotes
the observed location, % denotes the vector of observable characteristics of a typical
consumer, and ' denotes the vector of observable characteristics of a typical …rm. We
will consider here the identi…cation of the marginal product function, ¡"(!$ '$ () and of
the distribution of () The identi…cation of the utilty "¤(!$ %$ &) and of the distribution
of & can be established in an analogous way, and is therefore omitted. We will consider
the cases that require the minimal number of coordinates of ')
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Theorem 3.1. Let ' = ('1$ '2) 2 +2) Suppose that for some unknown twice di¤eren-
tiable function 5 : +2 ! +$ which is strictly increasing in its second argument, and
some known di¤erentiable function A : +2 ! +

(2) ¡"(!$ '1$ '2$ () = 5 (A(!$ '1)$ '2 ¡ ()
Normalize the function 5$ …xing its value at one point, so that for some values ! of !$
'1 of '1$ and : 2 +$

(3) 5 (A(!$ '1)$ :) = *" (!)

Let
£
>12$ >

2
2

¤
denote the support of '2¡($ and for any >2 2

£
>12$ >

2
2

¤
$ let [>11(>2)$ >

2
1(>2)] denote

the support of A (1('1$ '2$ ()$ '1) conditional on '2 ¡ ( = >2) Then, for any (!$ '1$ '2$ ()
such that '2 ¡ ( 2

£
>12$ >

2
2

¤
and A(!$ '1) 2 [>11(>2)$ >21(>2)]

¡"(!$ '1$ '2$ () is identi…ed

Proof of Theorem 3.1: Since ¡" is weakly separable in '2 ¡ ($ the function ! =
.('1$ '2$ ()$ which satis…es the FOC is also weakly separable in '2 ¡ () Hence, for some
unknown function ,

(4) 1('1$ '2$ () = ,('1$ '2 ¡ ()
Let '2 and ( be such that '2 ¡ ( = :) Then, by (2) and (3)

(5) ¡"(!$ '1$ '2$ () = *"(!)

Hence, ! satis…es the FOC when '1 = '1 and '2 ¡ ( = :) It then follows that

(6) ,('1$ :) = 1('1$ '2$ () = !

By the de…nition of 1$

(7)
/.

/'2
=

¡"+2
*"" ¡ ¡""

By the SOC of the …rm, *"" ¡¡"" 0 0) By (3) and the assumption that the function 5
is strictly increasing in its second coordinate, ¡"+2 0 0) Hence, by (7) and (4), ,2 0 0$
where ,2 denotes the derivative of , with respect to its second argument. Summarizing,
the unknown function , that relates '1$ '2$ and ( to the value of ! that satis…es the
FOC is such that
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(8) ! = ,('1$ '2 ¡ ()$ , is strictly increasing in its second argument & ,('1$ :) = !

By (8) and Matzkin (2002), the function , and the distribution of ( are identi…ed from
the conditional cdf of ! given ('1$ '2)) More speci…cally, let ¡6j,=(+1'+2)(!) denote the
conditional cdf of ! given ('1$ '2)) Let 9$(() denote the cdf of () Then, for any B

(9) 9$(B) = 1¡ 96j,=(+1'0+7)(!)
and for any e'1$ e'2$ eB

(10) ,(e'1$ e'2 ¡ eB) = 9¡16j,=(e+1'e+2) (1¡ 9$(eB))
That is, the value of the cdf of ( at B equals 1 minus the value of the conditional cdf
of ! given ('1$ '2)$ when ! = !$ '1 = '1$ and '2 = : + B) For any values e'1$ e'2$ eB$ the
value of the function , at (e'1$ e'2 ¡ eB) equals the value of the inverse of the conditional
cdf of ! given that '1 = e'1 and '2 = e'2 ¡ eB$ where this inverse function is evaluated at
1¡ 9$(B))

Next, to show that the function 5 is identi…ed, let (>1$ >2) be any vector such that
>2 2

£
>12$ >

2
2

¤
and >1 2 [>11(>2)$ >21(>2)]) Let '¤1 denote a solution to

(11) A(,('¤1$ >2)$ '
¤
1) = >1

Since A is a known function and , can be recovered from the conditional cdf of ! given
('1$ '2)$ the only unknown in (11) is '¤1) Since >2 2

£
>12$ >

2
2

¤
and >1 2 [>11(>2)$ >21(>2)]$ '¤1

exists. Since ,('¤1$ >2) satis…es the FOC,

(13) 5(>1$ >2) = 5 (A (,('¤1$ >2)$ '
¤
1) $ >2)

= *" (,('
¤
1$ >2))

= *" (1('
¤
1$ '

¤
2$ (

¤))

for any '¤2 and ( such that '¤2 ¡ ( = :) In (13), the …rst equality follows because
A(,('¤1$ >2)$ '¤1) = >1; the second equality follows because when ! is substituted by the
value that satis…es the …rst order conditions, the value of the marginal product function
5 equals the value of the marginal price function at the particular value of ! that
satis…es the …rst order conditions. The third equality follows by the restriction on the
function 1) Since the function *" is known and the function 1 can be recovered without
knowledge of5$ (13) implies that the function5 is identi…ed.. This completes the proof
of Theorem 3.1.
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The statement and the proof of Theorem 1 can be easily modi…ed to show that the
function ¡" is also identi…ed when for some unknown function 5 : +2 ! + and some
known function A : +2 ! +$ such that 9"+2 0 0

(14) 9"(!$ '1$ '2$ () = 5(A(!$ '2 ¡ ()$ '1)

To see this, normalize the function 5 by requiring that for some values ! of !$ '1 of '1$
and : 2 +$

(15) 5 (A(!$ :)$ '1) = *" (!)

then, by (14), the demand function ! = 1('1$ '2$ () = ,('1$ '2 ¡ () for some unknown
function ,$ and by (15),

(16) ,('1$ :) = !

By the assumption that 9"+2 0 0 and the SOC, , is strictly increasing in :. Using (16)
together with the monotonicity of , with respect to :$ we can use the results in Matzkin
(2002) to identify and estimate the function , and the distribution of () Next, to identify
and estimate the function 5 at a point (>1$ >2), …nd the value C¤ that satis…es

(17) A (,(>2$ C
¤)$ C¤) = >1

Then,

(18) 5(>1$ >2) = *" (,(>2$ C
¤))

The following Theorem is based on a similar identi…cation strategy, but it uses
a di¤erent set of normalizations for the function 9") It requires only one observable
heterogeneity variable ')

Theorem 3.2. : Let ' 2 +) Suppose that for some unknown function 5 : +2 ! + and
some known function : +2 ! +$

(21) ¡"(!$ '$ () = 5 (A(!$ ')$ ()

18



Assume that ¡"$ 0 0) Use the function *" to …x the value of the unknown function ¡"
at one value ' of '$ and on the 45 degree line on the (!$ () space, by requiring that for
all >$

(22) ¡"(>$ '$ >) = *"(>)

Let ( be given. Let A 2 (A1(()$ A2(())$ the support of A(1('$ ()$ ')) Then,

¡"(!$ '$ () is identi…ed

Proof of Theorem 3.2: By (22) it follows that the value of ! that satis…es the FOC
when ' = ' and ( = > is ! = >) Hence, the demand function, 1('$ ()$ satis…es

(23) 1('$ () = (

By the SOC and the assumption that ¡"$ 0 0

(24)
/1

/(
=

¡"$
*"" ¡ ¡"" 0 0

Then, we can use the methods in Matzkin (2002) to determine that

(25) 9$(B) = 96j,=+(B)

and

(26) 1(e'$ B) = 9¡1
6j,=e+(9$(B))

That is, the value of the cdf of ( at any point B is given by the value of the conditional
cdf of ! given that ' = ', when this cdf is evaluated at ! = B) The value of the function
d at any point (e'$ B) is given by the value of the inverse function of the conditional cdf
of ! given that 4 = e'$ when the inverse function is evaluated at 9$(B))

Next, to see that the function 5 is identi…ed, let '¤ denote the solution to

(27) A (1('¤$ >2)$ '¤) = >1

Hence,
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(29) 5(>1$ >2) = 5 (A (1('
¤$ >2)$ '¤) $ >2)

Since 1 is the demand function, and the value of 5 equals that of the marginal product
function,¡"$ it follows by the FOC that

(30) 5 (A (1('¤$ >2)$ '¤) $ >2) = *" (1('¤$ >2))

Hence,

(31) 5(>1$ >2) = *" (. ('
¤(>1$ >2)$ >2))

This shows that the function 5 is identi…ed and it completes the proof of Theorem 3.2.

Instead of specifying in proposition 2 that

(21) ¡"(!$ '$ () = 5 (A(!$ ')$ ())

and (22) hold, we could have speci…ed, instead, that

(33) ¡"(!$ '$ () = 5 (A(!$ ()$ ')

and (22) hold. The identi…cation analysis would have been very similar. More speci…cally,
if (33) and (22) hold, then, also in this case, the demand function satis…es

1('$ () = (

and is strictly increasing in (. So, the function 1 and the distribution of ( are both
identi…ed from the conditional cdf of ! given ') Next, to identify 5(>1$ >2), let '¤ denote
a solution to

A (1('¤$ >2)$ >2) = >1

Making use of the FOC,

5(>1$ >2) = *" (1('
¤$ >2))
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Using similar arguments, it is also possible to show that the function ¡" is identi…ed
when a normalization is achieved by completely specifying the distribution of ($ and
where the function ¡ is speci…ed to equal either 5 (A(!$ ')$ () or 5 (A(!$ ()$ ') for known
A and unknown 5)

4. ESTIMATION

The proofs of Theorems 3.1 and 3.2 provide ways of nonparametrically estimating the
distribution of ($ the demand function 1$ and the marginal product function ¡) Suppose
that the assumptions in Theorem 1 are satis…ed, so that the demand function has the
form ,('1$ '2¡()) To obtain an estimator for ¡$ …rst estimate the distribution of ( and the
demand function , using the conditional cdf of ! given ('1$ '2)$ as described in Matzkin
(2002). Then, use the estimated function b, and the known function A to calculate the
value '¤1 that satis…es

A(b,('¤1$ >2)$ '¤1) = >1
The estimator b5(>1$ >2) of 5(>1$ >2)$ is then given by the equation

(13) b5(>1$ >2) = *" (b,('¤1(>1$ >2)$ >2))
A similar procedure can be described using the steps in the proof of Theorem 3.2.

To describe the estimators suppose that the equilibrium price function is known,
and that the available data is f88$ 4 8g for each of D1 …rms, and f88$ 38g for each of
D2 consumers. For simplicity, we will concentrate on the estimation of the marginal
product function for the case where the assumptions in Theorem 1 are satis…ed. Let
2(!$ '1$ '2) and 9 (!$ '1$ '2)denote, respectively, the joint pdf and cdf of (8$41$ 42)) Let
2̂(!$ '1$ '2) and 9̂ (!$ '1$ '2) denote the corresponding kernel estimators. Let 2̂6j,=(+1'+2)(!)
and 9̂6j,=(+1'+2)(!) denote the kernel estimators of, respectively, the conditional pdf and
conditional cdf of 8 given 4 = ('1$ '2)) Then,

2̂(!$ '1$ '2) =
1

9:3&

P9
8=1 E(

"¡6'
: $ +¡,

'

: ) $

9̂ (!$ '1$ '2) =
R "
¡1

R +
¡1 2̂9 (.$ ') 1. 1'$
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2̂6j,=+(!) =
-̂& ("'+)R1

¡1 -̂& (&'+) *&
$ and

9̂6j,=+(!) =
R "
¡1 -̂& (&'+) *&R1
¡1 -̂& (&'+) *&

where ' = ('1$ '2)$ and where E : + £ +; ! + is a kernel function and F9 is the
bandwidth. Analogous equations hold when 4 is substituted with 3 and ' = ('1$ '2)
is substituted with % = (%1$ %2)) The above estimator for 9 (!$ ') was proposed in
Nadaraya (1964). When E(.$ ') = C1(.)C2(') for some kernel functions C1 : +! + and
C2 : +

2 ! +$

9̂6j,=+(!) =

R "
¡1 2̂9(.$ ') 1.R1
¡1 2̂9 (.$ ') 1.

=

P9
8=1
eC1("¡"': ) C2(

+¡, '
: )P9

8=1 C2(
+¡, '
: )

where eC1(G) = R 2¡1 C1(.)1.) Note that the estimator for the conditional cdf of 8 given
4 is di¤erent from the Nadaraya-Watson estimator for 96j,=+(!)) The latter is the
kernel estimator for the conditional expectation of H ´ 1[8 · !] given 4 = ') For any
> and ', 9̂¡16j,=+(>) will denote the set of values of 4 for which 9̂6j,=+(!) = >)When the
kernel function C1 is everywhere positive, this set of values will contain a unique point.

Suppose that the marginal product function is such that for some unknown function
5

¡"(!$ '1$ '2$ () = 5 (A(!$ '1)$ '2 ¡ ()
where A : +2 ! + is some known function. Normalize the value of the function 5 at
one point by requiring that at some values ! of !$ '1 of '1$ and : 2 +$

5 (A(!$ '1)$ :) = *" (!)

Let 1('1$ '2$ () be the function that satis…es, for each ('1$ '2$ ()$ the FOC of the …rm.
Then, as argued in the proof of Theorem 1,

1('1$ '2$ () = ,('1$ '2 ¡ ()
for some unknown function ,, which is strictly increasing in its second coordinate and
is such that

,('1$ :) = 1('1$ '2$ () = !
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Using Matzkin (2002) it follows that for any B

b9$(B) = 1¡ b96j,=(+1'0+7)(!)
and for any e'1$ e'2$ eB

b,(e'1$ e'2 ¡ eB) = b9¡16j,=(e+1'e+2 ³1¡ b9$(eB)´
As described above, to obtain an estimator for 5(>1$ >2)$ we …rst calculate b'¤1 such that

(11) A(b,(b'¤1$ >2)$ b'¤1) = >1
and then let

b5(>1$ >2) = *" (b,(b'¤1$ >2))
We will establish the asymptotic properties of this estimator for the case where the

function A(!$ ') = ! ¢ ') We will make the following assumptions:

Assumption A.1: The sequence
©
88$ 4 8

ª
is i.i.d.

Assumption A.2: 2(8$ 4 ) has compact support £ ½ +3 and is twice continuously
di¤erentiable.

Assumption A.3: The kernel function E(¢$ ¢) is Lipschitz, vanishes outside a compact
set, integrates to 1, and is of order 2 )

Assumption A.4: As D !1$ ln(D)IDF39 ! 0 and F29

q
DF49 ! 0

Assumption A.5: 0 - 2('1$ '2)$ 2('1$ :+ B) -1; there exist J$ K 0 0 such that 8. 2
D(,('¤1$ '2¡B)$ K)$ 2(.$ ') ¸ J; there exist J0$ K0 0 0 such that 8(.$ '1) 2 D

¡
(,('¤1$ '2 ¡ B)$ '¤1) $ K0

¢
2(.$ ') ¸ J$ /,('¤1$ >2) 6= 0$ 96j,=(+¤1 '+2)(,('¤1$ '2 ¡ B)) 6= 0 )

Assumption A.6: >2 = '2 ¡ B for some '2 in the interior of the support of 42 and
some B in the interior of the support of (; >1 belongs to the interior of the support of
A (1('1$ '2$ ()$ '1) conditional on 42 = '2 and ( = B))
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Let
R
E(!)2 =

R ¡R
E(.$ ') 1.

¢2
1'$ where . 2 +)When assumptions A.1-A.5 are satis-

…ed, Theorems 1 and 2 in Matzkin (2002) imply that for any B and ('01$ '02)$

sup
72<

¯̄̄ b9$(B)¡ 9$(B)¯̄̄! 0 & b,('01$ '02 ¡ B)! ,('01$ '
0
2 ¡ B) in probability

and that

p
DF

³ b9$(B)¡ 9$(B)´! D (0$ @= ) &

p
DF9

¡b,('01$ '02 ¡ B)¡ ,('01$ '02 ¡ B)¢! D (0$ @>)

where

@= =

½Z
E(!)2

¾
[9$(B) (1¡ 9$(B)]

·
1

2('1$ :+ B)

¸
and

@? =

½Z
E(!)2

¾·
9$(B) (1¡ 9$(B))

26j,=+(,('01$ '02 ¡ B))2
¸·

1

2('1$ B+ :)
+

1

2('01$ '02)

¸
The next theorem uses assumptions A.1-A.6 to establish the asymptotic properties ofb5(>1$ >2)) Let ' = ('¤1$ '2) and ,¤ = ,('¤1$ '2 ¡ B) for '2 and B such that '2 ¡ B = >2) Lete' = ('1$ :+ B)) De…ne the constant L by

L =

µ
1

26j,=+ (,¤)

¶0@1 +
24 '¤1

%=(j)=*(>¤)
%+1

26j,=+ (,¤)
%@(>(+¤1 'A2)'+

¤
1 )

%+1

351A
Theorem 4.1. Suppose that Assumptions A.1-A.6 are satis…ed. Then, b5(>1$ >2) converges
in probability to 5(>1$ >2) and

p
DF4 (b5(>1$ >2)¡5(>1$ >2))! D(0$ @B) in distribution, where

@B =
©R
E(!)2

ª
[L]2 (*"" (,

¤))2
³

1
-(e+) + 1

-(+)

´ ¡
96j,=e+(!)(1¡ 96j,=e+(!))¢

The proof of this Theorem is presented in the Appendix.
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5. SUMMARY

We have considered hedonic equilibrium models where the marginal utility of each con-
sumer and the marginal product of each …rm are both nonadditive functions of the
attribute and a random vector of individual characteristics, which are di¤erent for the
consumers and …rms. We have demonstrated that this type of speci…cation is capable of
generating equilibria of di¤erent types, with and without bunching. We have shown that
when the vector of individual characteristics contains an observable characteristic, it is
possible to identify the nonadditive random marginal utility and nonadditive random
marginal product. We have provided nonparametric estimators for these functions and
have shown that they are consistent and asymptotically normal.

6. APPENDIX

Proof of Theorem 3: We use a Delta Method, like the ones developed in Ait-Sahalia
(1994) and Newey (1994). (See Matzkin (1999) and Altoniji and Matzkin (1997)
for other applications of this method.) Let 9 (!$ ') denote the distribution function
(cdf) of the vector of observable variables (8$4 )$ 2(!$ ') denote its probability den-
sity function (pdf), 2(') denote the marginal pdf of 4$ and 96j,=+ denote the con-
ditional cdf of 8 given 4 = ') Let M = 3) For any function N : +1+; ! +$ de-
…ne O(!$ ') = /;N(!$ ')I/!/'$ O(') =

R
O(!$ ') 1!$ O(') =

R
O(!$ ') 1! $ N6j,=+0(!0)

=
³R "0
¡1 O(!$ '

0)1!
´
IO('0)$ and fN6(!$ ') = R "

O(.$ ')1. =
R
1[. · !] O(.$ ') 1. where

1[¢] = 1 if [¢] is true, and it equals zero otherwise. Let Cdenote a compact set in +; that
strictly includes £) Let D denote the set of all functions N : +; ! + such that O(!$ ')
vanishes outside C. Let P denote the set of all functionsgN6 that are derived from some
N in D. Since there is a 1-1 relationship between functions in D and functions in P$we
can de…ne a functional on D or on P without altering its de…nition. Let kNk denote
the sup norm of O(!$ ')) Then, if Q 2D, there exists R1 0 0 such that if kQk · R1 then,
for some 0 - 7$ S -1$ all ' and all . 2 D(,('1$ '2 ¡ B)$ K)$

(1) jT(')j · 7 kQk $
¯̄̄R +
¡1 T(.$ ')1.

¯̄̄
· 7 kQk $

j2(') + T(')j ¸ S j2(')j $ and 2(.$ ') + T(.$ ') ¸ S j2(.$ ')j )

Let e! = !$ e' = ('1$ B+:) and ,¤ = ,('¤1$ >2))Let '2 and B be such that '¡ B = :) De…ne
the functionals
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U(N) = '1 such that ,('1$ >) ¢ '1 = >1

©(N) = ,('¤1$ >) = N
¡1
6j,=(+¤1 'A)

³
N¡16j,=e+(e!)´

¤(N) = ,(U(N)$ >) = N¡16j,=(C(D)'A)
¡
N6j,=e+(e!)¢

J(N) = ¤(N) ¢ U(N)

;(N) = >1

((N) = N6j,=(C(D)'A)(¤(N))

V(N) = N6j,=e+(e!)
Then, ,('¤1$ >2) = 9

¡1
6j,=(+¤1 '+2)

¡
96j,=e+(eB)¢ and ((N) = V(N) for all N)

((9 +Q)¡ ((9 ) =
R ¤(++,) -(&'C(=+E)'+2)+F(&'C(=+E)'+2)

-(C(=+E)'+2)+F(C(=+E)'+2)
¡

R ¤(+ ) -(&'C(= )'+2)
-(C(= )'+2)

=
-(C(= )'+2)

R ¤(++,) -(&'C(=+E)'+2)*&+-(C(= )'+2) R ¤(++,) F(&'C(=+E)'+2)*&
-(C(=+E)'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

¡ -(C(=+E)'+2)
R ¤(+ ) -(&'C(= )'+2)+F(C(=+E)'+2) R ¤(+ ) -(&'C(= )'+2)

-(C(=+E)'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

By the Mean Value Theorem

2 (U(9 +Q)$ '2) = 2 (U(9 )$ '2) +
%-(e+1'+2)
%+1

(U(9 +Q)¡ U(9 ))

T (U(9 +Q)$ '2) = T (U(9 )$ '2) +
%F(e+-1 '+2)

%+1
(U(9 +Q)¡ U(9 ))

2 (.$ U(9 +Q)$ '2) = 2 (.$ U(9 )$ '2) +
%-(&'e+01(&)'+2)

%+1
(U(9 +Q)¡ U(9 ))

and T (.$ U(9 +Q)$ '2) = T (.$ U(9 )$ '2) +
%F(&'e+001 (&)'+2)

%+1
(U(9 +Q)¡ U(9 ))

for some e'1$ e'G1 $ e'01(.)$ and e'001(.) between U(9 +Q) and U(9 )) Hence,

((9+Q)¡((9 ) = -(C(= )'+2)
R ¤(++,) -(&'C(= )'+2)*&+-(C(= )'+2)(C(=+E)¡C(= )) R ¤(++,) ./(01e*01(0)1*2).*1

*&

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

+
-(C(= )'+2)

R ¤(++,) F(&'C(= )'+2)*&+-(C(= )'+2)(C(=+E)¡C(= )) R ¤(++,) .2(01e*001 (0)1*2).*1
*&

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))
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¡ -(C(= )'+2)
R ¤(+ ) -(&'C(= )'+2)*&+./(e*11*2)

.*1
(C(=+E)¡C(= )) R ¤(+ ) -(&'C(= )'+2)*&

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

¡ F(C(= )'+2)
R ¤(+ ) -(&'C(= )'+2)*&+.2(e*-1 1*2)

.*1
(C(=+E)¡C(= )) R ¤(+ ) -(&'C(= )'+2)*&

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

Also by the Mean Value Theorem,R ¤(=+E)
2 (.$ U(9 )$ '2)1. =

R ¤(= )
2 (.$ U(9 )$ '2)1.+2 (,$ U(9 )$ '2) (¤(9 +Q)¡ ¤(9 ))R ¤(=+E)

T (.$ U(9 )$ '2)1. =
R ¤(= )

T (.$ U(9 )$ '2) 1.+T (,
0$ U(9 )$ '2) (¤(9 +Q)¡ ¤(9 ))R ¤(=+E) %-(&'e+01(&)'+2)

%+1
1. =

R ¤(= ) %-(&'e+01(&)'+2)
%+1

1.+
%-(>00'e+01(>00)'+2)

%+1
(¤(9 +Q)¡ ¤(9 ))

andR ¤(=+E) %F(&'e+001 (&)'+2)
%+1

1. =
R ¤(= ) %F(&'e+001 (&)'+2)

%+1
1.+

%F(>-'e+01(>-)'+2)
%+1

(¤(9 +Q)¡ ¤(9 ))

for some ,$ ,0$ ,00$ ,G between ¤(9 +Q) and ¤(9 )) Hence,

((9 +Q)¡ ((9 )

=
-(C(= )'+2)

R ¤(+ ) -(&'C(= )'+2)*&+-(C(= )'+2)(¤(=+E)¡¤(= ))-(>'C(= )'+2)*&
-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

+
-(C(= )'+2)(C(=+E)¡C(= ))

R ¤(+ ) ./(01e*01(0)1*2)
.*1

*&+-(C(= )'+2)(C(=+E)¡C(= ))(¤(=+E)¡¤(= )) ./(3
001e*01(300)1*2)
.*1

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

+
-(C(= )'+2)

R ¤(+ ) F(&'C(= )'+2)*&+-(C(= )'+2)(¤(=+E)¡¤(= ))F(>0'C(= )'+2)
-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

+
-(C(= )'+2)(C(=+E)¡C(= ))

R ¤(+ ) .2(01e*001 (0)1*2)
.*1

*&+-(C(= )'+2)(C(=+E)¡C(= ))(¤(=+E)¡¤(= )) .2(3
-1e*01(3-)1*2)
.*1

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

¡-(C(= )'+2)
R ¤(+ ) -(&'C(= )'+2)*&+./(e*11*2)

.*1
(C(=+E)¡C(= )) R ¤(+ ) -(&'C(= )'+2)*&

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

¡F(C(= )'+2)
R ¤(+ ) -(&'C(= )'+2)*&+.2(e*-1 1*2)

.*1
(C(=+E)¡C(= )) R ¤(+ ) -(&'C(= )'+2)*&

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

= -(C(= )'+2)(¤(=+E)¡¤(= ))-(>'C(= )'+2)*&
-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

+
-(C(= )'+2)(C(=+E)¡C(= ))

R ¤(+ ) ./(01e*01(0)1*2)
.*1

*&+-(C(= )'+2)(C(=+E)¡C(= ))(¤(=+E)¡¤(= ))./(3
001e*01(300)1*2)
.*1

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))
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+
-(C(= )'+2)

R ¤(+ ) F(&'C(= )'+2)*&+-(C(= )'+2)(¤(=+E)¡¤(= ))F(>0'C(= )'+2)
-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

+
-(C(= )'+2)(C(=+E)¡C(= ))

R ¤(+ ) .2(01e*001 (0)1*2)
.*1

*&+-(C(= )'+2)(C(=+E)¡C(= ))(¤(=+E)¡¤(= )) .2(3
-1e*01(3-)1*2)
.*1

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

¡
./(e*11*2)

.*1
(C(=+E)¡C(= )) R ¤(+ ) -(&'C(= )'+2)*&

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

¡F(C(= )'+2)
R ¤(+ ) -(&'C(= )'+2)*&+.2(e*-1 1*2)

.*1
(C(=+E)¡C(= )) R ¤(+ ) -(&'C(= )'+2)*&

-(C(= )'+2)(-(C(=+E)'+2)+F(C(=+E)'+2))

We next obtain an expression for U(9 +Q)¡U(9 )) By the de…nition of U$ for all N$h
N¡16j,=(C(D)'+2)(N6j,=e+(e!))iU(N) = >1

Denote (9 +Q)¡16j,=(C(=+E)'+2) ((9+Q)6j,=e+(e!)) by 9 0H0 $ (9 )¡16j,=(C(=+E)'+2) (9 )6j,=e+(e!)) by
9H0 $ (9 )¡16j,=(C(= )'+2) (9 )6j,=e+(e!)) by 9H $ U(9 +Q) by E0$ and U(9 ) by E) Then,
since ;(9 +Q)¡ ;(9 ) = 0$

9 0H0 ¢E 0 ¡ 9H ¢E = 0)

Hence

(*) 2 ¢ ¡9 0H0 ¡ 9H0
¢ ¢ (E0 ¡E) + ¡9 0H0 ¡ 9H0

¢ ¢E
+9H ¢ (E 0 ¡E) + (9H0 ¡ 9H) ¢E = 0

By the proof of Theorem 2 in Matzkin (2002), it follows that, for ' = ('¤1$ '2)

9 0H ¡ 9H = ©(9 +Q)¡©(9 ) = P©++©

where

P© = -(+)
-(e+)2-(©(= )'/)We' ¡ -(+)

-(+)2-(©(= )'+)
W'$

We' = 2(e') R e" T(.$ e')1.¡ T(e') R e" 2(.$ e')1.
W' = 2(')

R ©(= )
T(.$ ')1.¡ T(') R ©(= ) 2(.$ ')1.

and where for some large enough constants 74 and 76
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j+©(9$Q)j · 74 kQk2 and jP©(9$Qj · 76 kQk )

Using similar arguments, it is easy to show that for some reminder + that is bounded
by a constant times kQk2

9 0H0 ¡ 9H0

= (9 +Q)¡16j,=(C(=+E)'A)
¡
(9 +Q)6j,=e+(e!)¢¡ (9 )¡16j,=(C(=+E)'A) ¡(9 )6j,=e+(e!)¢

= -(+)
-(e+)2 -(>¤'+)

h
2(e') R e" T(.$ e')1.¡ T(e') R e" 2(.$ e')1.i

¡ -(+)
-(+)2 -(>¤'+)

h
2(')

R >¤
T (.$ ') 1.¡ T (') R >¤ 2(.$ ')1.i++

where the …rst two terms are bounded by the multiplication of a constant multiplied by
kQk ) This together with the assumption that 9H 6= 0 and the expression in (*) imply
that

kE0 ¡Ek · 7 kQk

for some positive constant 7) By the Mean Value Theorem, there exists # between
U(9 +Q) and U(9 ) such that

9H0 ¡ 9H

= (9 )¡16j,=(C(=+E)'A)
¡
(9 )6j,=e+(e!)¢¡ (9 )¡16j,=(C(= )'A) ¡(9 )6j,=e+(e!)¢

= , (E(9 +Q)$ >2)¡ , (E(9 )$ >2)

= %>(!'A2)
%+1

(U(9 +Q)¡ U(9 ))

Hence, for some reminder term + that is bounded by a scalar times kQk2 $
-(+)

-(e+)2 -(>¤'+)

h
2(e') R e" T(.$ e')1.¡ T(e') R e" 2(.$ e')1.i ¢ '¤1

¡ -(+)
-(+)2 -(>¤'+)

h
2(')

R >¤
T (.$ ') 1.¡ T (') R >¤ 2(.$ ')1.i ¢ '¤1

+ ,¤ ¢ (U(9 +Q)¡ U(9 )) + '¤1
%>(!'A2)
%+1

(U(9 +Q)¡ U(9 )) ++ = 0
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It follows that, for some + such that for some 7 0 0$ j+j · 7 kQk2

U(9 +Q)¡ U(9 )

=
(I+¡Ie+) *¤1

/(j)=*(3¤)
¢

>¤++¤1
.3(4152)
.*1

++

Substituting this into the expression for ((9 +Q) ¡ ((9 )$ rewriting the resulting ex-
pression, and putting all terms of order less than kQk2 into the term +$ we get that

((9 +Q)¡ ((9 )

= 26j,=+ (,¤) (¤(9 +Q)¡ ¤(9 )) ++

+W'

+

"
-(+)

R 3¤ ./(01*)
.*1

*&¡./(e*11*2)
.*1

R 3¤ -(&'+)*&
-(+)2

#"
(I+¡Ie+) *¤1

/(j)=*(3¤)
¢

>¤++¤1
.3(4152)
.*1

#

By the de…nition of V,

V(9 +Q)¡ V(9 ) = (9 +Q)6j,=e+(e!)¡ 96j,=e+(e!)
=

R e" -(&'e+) *&+R e" F(&'e+) *&
-(e+)+F(e+) ¡

R e" -(&'e+) *&
-(e+)

=
-(e+) R e" F(&'e+) *&¡F(e+) R e" -(&'e+) *&

-(e+)2 ++4

= We' ++4
where +4 is of order kQk2 ) Hence, since

((9 +Q)¡ ((9 ) = V(9 +Q)¡ V(9 )$

26j,=+ (,¤) (¤(9 +Q)¡ ¤(9 )) ++

+W'
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+

"
-(+)

R 3¤ ./(01*)
.*1

*&¡./(e*11*2)
.*1

R 3¤ -(&'+)*&
-(+)2

#"
(I+¡Ie+) *¤1

/(j)=*(3¤)
¢

>¤++¤1
.3(4152)
.*1

#
= We' ++5
Hence,

¤(9 +Q)¡ ¤(9 )

= (We' ¡W')
0B@1 + "-(+) R 3¤ ./(01*)

.*1
*&¡./(e*11*2)

.*1

R 3¤ -(&'+)*&
-(+)2

#264 *¤1
(/(j)=*(3¤))

2 ¢

>¤++¤1
.3(4152)

.*1

375
1CA++5

for some +5 of order kQk2 ) Note that

%=(j)=*(>¤)
%+1

=

"
-(+)

R 3¤ ./(01*)
.*1

*&¡./(e*11*2)
.*1

R 3¤ -(&'+)*&
-(+)2

#
and that

%@(>(+¤1 'A2)'+
¤
1)

%+1
= ,¤ + '¤1

%>(!'A2)
%+1

Hence,

¤(9 +Q)¡ ¤(9 )

= (Ie+¡I+)
-(j)=*(>¤)

0@1 +
24 .+(j)=*(3¤)

.*1

*¤1
/(j)=*(3¤)

>¤++¤1
.3(4152)
.*1

351A++5
It follows that

¤(9 +Q)¡ ¤(9 ) = P¢(9 ;Q) ++¢(9 ;Q)

where for some scalar S$

jP¢(9 ;Q)j · S kQk $ j+¢(9 ;Q)j · S kQk2 and
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P¢(9 ;Q) = (We' ¡W')³ 1
-(j)=*(>¤)

´0@1 +
24 .+(j)=*(3¤)

.*1

*¤1
/(j)=*(3¤)

>¤++¤1
.3(4152)
.*1

351A
Let T(.$ e') = b2(.$ e')¡ 2(.$ e') and T(e') = b2(e')¡ 2(e')$ then·
-(e+) R e" F(&'e+)*&¡F(e+) R e" -(&'e+)*&

-(e+)2
¸
=
R h

1(&·e")¡=
(je)=e*(e")i

-(e+)
³ b2(.$ e')¡ 2(.$ e')´ 1.

and·
-(+)

R 3¤ F(&'+) *&¡F(+) R 3¤ -(&'+)*&
-(+)2

¸
=
R [1(&·>¤)¡=(j)=*(>¤)]

-(+)

³ b2(.$ ')¡ 2(.$ ')´ 1.
so that

P¢(9 ; b9 ¡ 9 )
= L

R h
1(&·e")¡=(je)=e*(e")i

-(e+)
³ b2(.$ e')¡ 2(.$ e')´ 1.+L R [1(&·>¤)¡=(j)=*(>¤)]-(+)

³ b2(.$ ')¡ 2(.$ ')´ 1.
where

L =
³

1
-(j)=*(>¤)

´0@1 +
24 .+(j)=*(3¤)

.*1

*¤1
/(j)=*(3¤)

>¤++¤1
.3(4152)

.*1

351A
Following the same arguments as in Matzkin (2002), it is easy to show that this implies
that

b,('¤1$ >2)¡ ,('¤1$ >2) converges in probability to 0 and that
p
DF4 (b,('¤1$ >2)¡ ,('¤1$ >2))! D(0$ @>) in distribution where

@> =
©R
E(!)2

ª
[L]2

³
1
-(e+) + 1

-(+)

´¡
96j,=e+(e!)(1¡ 96j,=e+(e!))¢

Since

b5(>1$ >2) = *" (b,('¤1$ >2))
it follows by the delta method that
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p
DF4 (b5(>1$ >2)¡5(>1$ >2))! D(0$ @B)

in distribution where

@B =
©R
E(!)2

ª
[L]2 (*"" (,('

¤
1$ >2)))

2
³

1
-(e+) + 1

-(+)

´¡
96j,=e+(e!)(1¡ 96j,=e+(e!))¢
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